
Cours 4

• Gaz parfaits et fluides réels.
o Théorie microscopique, physique statistique.

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, 
carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. Perhaps it will be wise to approach 
the subject cautiously.
       David L. Goodstein [ States of Matter ]
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Les objectifs du cours 4

1 Modèle microscopique pour un gaz idéal ? 
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• Description de la statistique des composants du gaz (molécules et/ou atomes) à 
l'équilibre thermodynamique.

Que peut on dire des distributions statistiques des variables microscopiques (telles que 
la vitesse individuelle des atomes ou des molécules) ? 

• But retrouver la loi des gaz parfaits :
PV = nRT 
 R : constante des gaz parfaits R = 8,314 J·K-1·mol-1

 Prédire la valeur de R ?

Théorie cinétique des gaz
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• Hypothèses :

o Molécules réparties uniformément dans tout le volume offert
o Vitesses isotropes (i.e. toutes les directions de l'espace sont équivalentes)
o Composantes vx, vy, vz des vitesses indépendantes 
o Modèle du gaz parfait :

- Les molécules sont des particules dures
- Les dimensions sont négligeables devant leur distance moyenne.
- Les chocs sont élastiques.
- Les composantes des positions r et vitesses v sont distribuées au 

hasard (leur loi de probabilité reste à déterminer).

Théorie cinétique des gaz
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Transfert de quantité de mouvement d’une molécule venant frapper le piston:

∆ px = px
fin − px

in = −mvx − (+mvx ) = −2mvx , ∆ py =∆ pz = 0

∆ px
piston = −∆ px = 2mvx

Théorie cinétique des gaz

Gaz parfait
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Calcul pour N molécules venant frapper le piston par unité de temps
ou dn par durée infinitésimale dt :

Théorie cinétique des gaz

Gaz parfait

• Particules, de densité totale ρ, éventuellement 
différents types de particules avec leur propre 
densité.

• La densité de particules ayant une vitesse entre 
vx et vx + dvx est notée (temporairement) ρn,vx(vx).  

!v =
vx
vy
vz
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Attention : généralisation de la notion de densité :

Liste complète des signaux routiers

A14

Autres dangers. La nature du 
danger pouvant ou non être 
précisée par un panonceau

A15a1

Passage d'animaux 
domestiques

A15a2

Passage d'animaux 
domestiques

A15b

Passage d'animaux sauvages

A15c

Passage de cavaliers

A16

Descente dangereuse

A17

Annonce de feux tricolores

A18

Circulation  dans les deux sens

A19

Risque de chute de pierres ou 
de présence sur la route de 
pierres tombées

A20

Débouché sur un quai ou une 
berge

A21

Débouché de cyclistes venant 
de droite ou de gauche

A23

Traversée d'une aire de 
danger aérien

A24

Vent latéral

AB1

Intersection où le conducteur 
est tenu de céder le passage 
aux véhicules débouchant de 
la ou des routes situées à sa 
droite

AB2

Intersection avec une route 
dont les usagers doivent 
céder le passage dans le cas 
où un panneau AB6 ne peut 
être utilisé

AB3a

Cédez le passage à 
l'intersection. Signal de 
position

AB3b

Cédez le passage à 
l'intersection. Signal avancé 
de l'AB3a

AB4

Arrêt  à l'intersection dans les 
conditions définies à l'article 
R.415-6 du code de la route. 
Signal de position

AB5

Arrêt  à l'intersection. Signal 
avancé du AB4

AB6

Indication du caractère 
prioritaire d'une route

AB7

Fin du caractère prioritaire 
d'une route

AB25

Carrefour à sens giratoire

B0

Circulation interdite à tout 
véhicule dans les deux sens

B1

Sens interdit à tout véhicule

B2a

Interdiction de tourner à 
gauche à la prochaine 
intersection

B2b

Interdiction de tourner à droite 
à la prochaine intersection

B2c

Interdiction de faire demi-tour 
sur la route suivie jusqu'à la 
prochaine intersection

Les signaux routiers réglementaires - édition novembre 2002
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• Quantité de masse dm par volume dV Masse volumique, densité

• Nombre de particules dn par volume dV Densité de particules (spatial)

• Nombre de particules dn par volume dV 
ayant une vitesse entre vx et vx + dvx Densité de particules (vitesses)

 
ρm (
!r ) = dm

dV

 
ρn (
!r ) = dn

dV

		 
ρn ,vx (

!r ,vx )=
dn

dVdvx
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Théorie cinétique des gaz

Gaz parfait

• Particules, de densité totale ρ.
• La densité de particules ayant une vitesse entre vx 

et vx + dvx est notée (temporairement) ρn,vx(vx).

 

!v =
vx
vy
vz
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• Certaines particules ont une vitesse telle qu'elles percutent la surface S pendant 
l'intervalle de temps dt

• on veut calculer la force moyenne et la pression exercée sur S.

• Soient les particules ayant une vitesse entre vx et vx + dvx. 

S

 

!vin =
vx
vy
vz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

!vout =
−vx
vy
vz
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Calcul pour N molécules venant frapper le piston par unité de temps
ou dn par durée infinitésimale dt :
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Théorie cinétique des gaz

Gaz parfait

• Durant un temps dt, les particules qui vont percuter S sont celles ayant vx > 0 et 
contenues dans la tranche d'épaisseur dl. 

• dl = vx dt
• dt est arbitrairement petit et peut être choisi de sorte que :

o Aucunes particules dans la tranche dl subit une collision avec une autre  particule
o dl est beaucoup plus petit que le diamètre de S

 
d
!
F = d

2 !p
dt

= d
2px
dt
!ux =

2mvx
dt

d 2nvx
!ux• Loi de Newton

m : masse des particules : nombre de particules de vitesses ∈ [vx, vx+dvx] dans S×dld 2nvx

S

 

!vin =
vx
vy
vz
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Théorie cinétique des gaz

Gaz parfait

S

x

y

z

dl=vxdt

• Soit ρn,vx(vx) la densité de particules avec une vitesse vx. 

 

− d 2nvx = ρn,vx
(vx )dvxSdl = Sρn,vx

(vx )dvxvxdt

− d
!
F = 2mvx

dt
d 2nvx

!ux = 2mSρn,vx
(vx )vx

2dvx
!ux

 
− F⊥ =

!
F ⋅ !ux = 2mSρn,vx

(vx )vx
2 dvx

0

+∞

∫ = 2mS ρn,vx
(vx )vx

2 dvx
0

+∞

∫

vx
2 =

ρn,vx
(vx )vx

2 dvx
−∞

+∞

∫

ρn,vx
(vx )dvx

−∞

+∞

∫
= 1
ρ

ρn,vx
(vx )vx

2 dvx
−∞

+∞

∫ = 2
ρ

ρn,vx
(vx )vx

2 dvx
0

+∞

∫

− P = F⊥
S

= mρ vx
2

− ρ = N
V

− PV = Nm vx
2 = nNAm vx

2

Par définition :

!  
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• La condition sur les vitesses isotropes se traduit par une probabilité équivalente 
d’avoir le vecteur vitesse dans une direction donnée.

• Autrement dit : <v²x> = <v²y> = <v²z> et  <v²> = <v²x> + <v²y> + <v²z> = 3 <v²x> 

soit

PV = Nm vx
2

vx
2 = 1

3
v2

Avec

• Finalement PV = 1
3
Nm v2 = 2

3
N Ecin = 2

3
nNA Ecin

Ecin = 1
2
m v2

Théorie cinétique des gaz

Gaz parfait

• Suggestion d'exercice : En reprenant un calcul très semblable, démontrer la loi de 
Dalton sur les pressions partielles d'un mélange de gaz. 

!
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• Postulat (Boltzmann) : Equipartition de l'énergie : chaque "degré de liberté" d'un système 
à l'équilibre thermodynamique est énergétiquement équivalent et contient la même 
quantité d'énergie qui vaut ½ kBT par "degré de liberté"  (avec une nouvelle constante 
fondamentale introduite par Boltzmann kB = 1,38.10-23 J/K)

• Pour Ecin, il y a 3 directions de translation possibles

• Note :  nous reviendrons un peu plus tard sur cette notion de 
"degré de liberté" qui ne vaut pas nécessairement 3.

		
Ecin = 12m v2PV = 1

3
Nm v2 = 2

3
N Ecin

Théorie cinétique des gaz

Gaz parfait. Equation pour l’énergie.

Liste complète des signaux routiers

A14

Autres dangers. La nature du 
danger pouvant ou non être 
précisée par un panonceau

A15a1

Passage d'animaux 
domestiques

A15a2

Passage d'animaux 
domestiques

A15b

Passage d'animaux sauvages

A15c

Passage de cavaliers

A16

Descente dangereuse

A17

Annonce de feux tricolores

A18

Circulation  dans les deux sens

A19

Risque de chute de pierres ou 
de présence sur la route de 
pierres tombées

A20

Débouché sur un quai ou une 
berge

A21

Débouché de cyclistes venant 
de droite ou de gauche

A23

Traversée d'une aire de 
danger aérien

A24

Vent latéral

AB1

Intersection où le conducteur 
est tenu de céder le passage 
aux véhicules débouchant de 
la ou des routes situées à sa 
droite

AB2

Intersection avec une route 
dont les usagers doivent 
céder le passage dans le cas 
où un panneau AB6 ne peut 
être utilisé

AB3a

Cédez le passage à 
l'intersection. Signal de 
position

AB3b

Cédez le passage à 
l'intersection. Signal avancé 
de l'AB3a

AB4

Arrêt  à l'intersection dans les 
conditions définies à l'article 
R.415-6 du code de la route. 
Signal de position

AB5

Arrêt  à l'intersection. Signal 
avancé du AB4

AB6

Indication du caractère 
prioritaire d'une route

AB7

Fin du caractère prioritaire 
d'une route

AB25

Carrefour à sens giratoire

B0

Circulation interdite à tout 
véhicule dans les deux sens

B1

Sens interdit à tout véhicule

B2a

Interdiction de tourner à 
gauche à la prochaine 
intersection

B2b

Interdiction de tourner à droite 
à la prochaine intersection

B2c

Interdiction de faire demi-tour 
sur la route suivie jusqu'à la 
prochaine intersection

Les signaux routiers réglementaires - édition novembre 2002
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Et donc

PV = NkBT   N nombre de molécules, kB constante de Boltzmann

PV = n !A kBT = nRT n nombre de moles

R = !A kB   R constante des gaz parfaits 

Ecin = 1
2
m v2 = 3

2
kBTPV = 1

3
Nm v2 = 2

3
N Ecin

Théorie cinétique des gaz

Gaz parfait. Equation pour l’énergie.

"! Loi des gaz parfaits 

kB = 1,38.10-23 J/K
!A = 6,02 1023 atomes/mole
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• C’est l’énergie cinétique microscopique totale (dans le référentiel du centre de masse)
• Première définition pour un gaz parfait mono-atomique (notre modèle) :

Première loi de Joule : Pour un gaz parfait l'énergie interne 
est uniquement fonction de la température

James Prescott Joule
1818 - 1889

UGP mono-atomique =
3
2
nRT

U = Emolécules
cin

particules
∑ avec Emolécules

cin = 3
2
kBT

U = 3
2
NkBT = 3

2
nRT

Théorie cinétique des gaz

Indépendant de la pression P et du volume V.

Gaz parfait, suite : Une nouvelle quantité, fonction d'état : Energie interne, U
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Théorie cinétique des gaz

• On a retrouvé la loi des gaz parfaits.

• On établit un premier lien entre agitation microscopique, énergie cinétique 
microscopique et température.

• On a introduit une nouvelle fonction thermodynamique qui, pour un gaz parfait est 
une fonction d'état.

Premier bilan .

Est ce que l'on peut aller un peu plus loin ?
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1ère expérience de mesure de la distribution des vitesses

Théorie cinétique des gaz

Distribution des vitesses

John A. Eldridge Phys. Rev. Vol.30 931 (1927)
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1ère expérience de mesure de la distribution des vitesses

Les molécules atteignent le détecteur si v = s ω/θ

∆t1 = s/v
∆t2 = θ/ω

D’où pour ∆t1 = ∆t2 , v = s ω/θ

ω

Exercice : Calculer la vitesse v des molécules en fonction de s, ω et θ

Théorie cinétique des gaz

Distribution des vitesses
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Théorie cinétique des gaz

Distribution des vitesses

Page 1-26 Chapter 1

Figure 1.8 Time-of-flight measurement:
intensity as a function of flight time. [from J.
F. C. Wang and H. Y. Wachman, as
illustrated in F. O. Goodman and H. Y.
Wachman, Dynamics of Gas-Surface
Scattering, (Academic Press, new York,
1976)]

G( )d 4 2
m

m
2 kT

3
2 exp

kT
d

2m

2 1
kT

3
2 exp

kT
d .

(1.37)

We will consider the flux in more detail in Section 4.3.2 and make extensive use of it in
Chapter 4.

We now return to the speed measurement.  Most detectors actually measure the
number of molecules in a particular volume during a particular time duration.  For example,
the detector might measure current after ionizing those molecules that enter a volume defined
by a cross-sectional area of A and a length .  Because molecules with high velocity traverse
the distance  in less time than molecules with low velocity, the detection sensitivity is
proportional to 1/v.  The detector signal S(t) is thus proportional to JA dv/v, or to n*A F(v)dv,
where n* is the number density of molecules in the oven.  Assuming that a very narrow pulse
of molecules is emitted from the chopper, the speed measured at a particular time t is simply
v = L/t.  We must now transform the velocity distribution from a speed distribution to a time
distribution. Note that dv = d(L/t) = -Ldt/t2 and recall from (1.31) that F(v)dv  v2exp(- v2)dv

 (1/t2)exp(- L2/t2)(L/t2).  We thus find that S(t)  t-4exp(- L2/t2).  Figure 1.8 displays a arrival
time distribution of helium measured using this "time-of-flight" technique.  The open circles
are the detector signal, while the smooth line is a fit to the data of a function of the form
expected for S(t).  The best fit parameter gives a temperature of 300 K.

1.6 Energy Distributions

It is sometimes interesting to know the distribution of
molecular energies rather than velocities.  Of course,
these two distributions must be related since the
molecular translational energy  is equal to ½mv2.
Noting that this factor occurs in the exponent of
equation (1.31) and that d  = mvdv = (2m )½dv, we can
convert velocities to energies in (1.31) to obtain

The function G( )d  tells us the fraction of molecules which have energies in the range
between  and +d .  Plots of G( ) are shown in Figure 1.9.

De "Dynamics of Gas-Surface Scattering" F.O. Goodmann 
& H-Y. Wachman (Academic Press, new York, 1976) 

He
T = 300 K
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• Dans un système à l'équilibre thermodynamique en 
contact avec un thermostat à la température T, la 
probabilité d’avoir le système dans un état s d’énergie Es 
est (postulat de Boltzmann) : 

La constante est déterminée par 

Exemple:

P1 P2

P = 1

P2 = 2P1   et   P = P1+P2 = 1 ⇒ P1 = 1/3 et P2 = 2/3

kB constante de Boltzmann
kB = 1,381 10-23 JK-1

	Ps ∝e
−
Es
kBT

	

PA
PB

= e
−
EA−EB( )
kBT

Ps
états s
∑ = 1

E

• Ou bien, le rapport des probabilités d'être dans  l'état A, 
d'énergie EA et B d'énergie EB est : (indépendant du choix 
de l'origine de E)

Théorie cinétique des gaz

Postulat de Boltzmann (autre formulation que l'on admettra équivalente)
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• Comme vx est une variable continue la probabilité p(vx = vx0) n'a pas de sens, il faut 
considérer la probabilité d’avoir une particule à la vitesse vx à dvx près et introduire une 
densité de probabilité Pv.

• Soit une particule dans un gaz se déplaçant suivant x. Son énergie cinétique est

Cas à 1 dimension

dpv∈ vx ,vx+dvx[ ] = Pvxdvx

Théorie cinétique des gaz

Distribution des vitesses

Es = Ecin vx( ) = 1
2
mvx

2

Pvx =
dpv∈ vx ,vx+dvx[ ]

dvx
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• La constante est alors déterminée par Pvx dvx
−∞

∞

∫ = 1= Cst e
− mvx

2

2kBT dvx
−∞

∞

∫

Cas à 1 dimension

• La probabilité d’avoir une particule à la vitesse vx à dvx près est (Boltzmann)

Théorie cinétique des gaz

Distribution des vitesses

		
Pvx =

dpvx
dvx

=Cst	×e
−
mvx

2

2kBT

		
dp

v∈ vx ,vx+dvx⎡⎣ ⎤⎦
∝e

−
mvx

2

2kBTdvx Pvx =
dpvx
dvx

∝e
−
mvx

2

2kBT et donc :

Nous savons que
(voir cours math)

Ici α = m/2kBT d'oùe−αx
2

dx
−∞

∞

∫ = π
α Cst = m

2πkBT
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Distribution Gaussienne des vitesses:

Loi de Gauss : 

Théorie cinétique des gaz

Distribution des vitesses

ρ(x) = 1
2πσ e

− x2

2σ 2

Pvx =
m

2πkBT
 e

− mvx
2

2kBT

Cas à 1 dimension
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Question: combien de molécules dans un volume V ont un 
vecteur vitesse compris entre    et              ?

Théorie cinétique des gaz

Distribution des vitesses

Cas à 3 dimensions

Loi centrée en 0. Ce n'est pas encore exactement la quantité que nous cherchons, 
mais on y est presque …

1) Densité de probabilité pour qu'une molécule ait la vitesse    : 
!v

Comme les composantes vx, vy et vz sont des variables indépendantes :

Pvx ,vy ,vz
= PvxPvyPvz =

m
2π kBT

⎛

⎝⎜
⎞

⎠⎟

3

 e
− mvx

2

2kBT e
−
mvy

2

2kBT e
−
mvz

2

2kBT

Finalement : Pvx ,vy ,vz =
m

2πkBT
⎛
⎝⎜

⎞
⎠⎟

3
2
e
− mv2

2kBT

 
!v + d!v 

!v
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• La probabilité dpv s’obtient en sommant Pvx,vy,vz sur toutes les possibilités qui 
permettent d’avoir un vecteur vitesse dont le module est compris entre v et v + dv

• La probabilité qu’une molécule ait la norme 
v à dv près se calcule alors sur l'ensemble 
des vecteurs v de module compris entre v 
et v+dv

• Ceci correspond au volume situé entre les 
deux sphères de rayon v et v+dv dans 
l’espace des vitesses

Ce volume vaut :  SSphère × dv = 4πv² dv 

Théorie cinétique des gaz

Distribution des vitesses

• Les vitesses sont distribuées de manière isotrope dans toutes les directions.

dv

Espace des 
vitesses :

v

 
dp!v = Pvx ,vy ,vzdvxdvydvz → P|!v| ??{ }dv

2) Probabilité pour qu’une molécule ait la vitesse          à dv près :|
!
v |
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3) Fonction de distribution Pv 

Loi de distribution des vitesses de Maxwell-Boltzmann

• Pv : Fonction de distribution de Maxwell 
ou densité de probabilité pour une vitesse v

• La probabilité qu'une molécule ait la norme v à dv près est alors: 

Théorie cinétique des gaz

Distribution des vitesses

dpv = P vx
2 +vy

2+vz
2 4πv

2dv

Pv =
dpv
dv

= m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

3
2
4πv2e

− mv2

2kBT
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• Vitesse moyenne

• Vitesse quadratique moyenne

ou encore

• Vitesse la plus probable

(dPv /dv = 0)
On retrouve l'hypothèse de répartition de l'énergie 
de Boltzmann, ici démontrée pour un gaz parfait

Théorie cinétique des gaz

Loi de distribution des vitesses de Maxwell-Boltzmann

vm = Pvvdv
0

∞

∫ = 8kBT
πm

vqm
2 = v2 = Pvv

2 dv
0

∞

∫ = 3kBT
m

1
2
mv2 = 3

2
kBT

vprob.max =
2kBT
m
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Théorie cinétique des gaz

Pv =
dpv
dv

= m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

3
2
4πv2e

− mv2

2kBT

Loi de distribution des vitesses de Maxwell-Boltzmann

T = 25 °C
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Théorie cinétique des gaz

Pv =
dpv
dv

= m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

3
2
4πv2e

− mv2

2kBT

Loi de distribution des vitesses de Maxwell-Boltzmann
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Théorie cinétique des gaz

Maxwell-Boltzmann à 2 
dimensions ( ⇒ exercice)

Thermalisation des vitesses (deux dimensions)

Jupyter Notebook, 
noto.epfl.ch
go.epfl.ch/particules

Mode d'emploi des 
Jupyter notebooks de 
physique générale
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L’essentiel du cours 4

Loi des gaz parfait obtenue par un modèle microscopique2

Notion de théorie cinétique des gaz1

Equipartition de l’énergie : chaque "degré de liberté" du 
système possède la même quantité d’énergie  : 1/2kBT

4

Généralisation de la notion de densité.3
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Statistique de Boltzmann : Système à 
l'équilibre avec un thermostat à la 
température T.
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Loi de distribution des vitesses 
de Maxwell-Boltzmann.
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Nouvelle fonction d'état : l'énergie interne, U.6

Première loi de Joule : Pour un gaz parfait l'énergie 
interne est uniquement fonction de la température.
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Expériences de cours

Mesure de la distribution de vitesse

Radiomètre de Crookes

Modèles de cristallisation

Expériences auditoires EPFL : auditoires-physique.epfl.ch
Chaine YouTube : www.youtube.com/channel/UC4htKGfCRRkFyIqAo8DGocg
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